
Makalah IF4020 Kriptografi, Semester I Tahun 2021/2022

RGBA Image Cryptography using Elliptic Curve
RSA and Undeniable Digital Signature

Hokki Suwanda – 135191431
Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika
Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

113519143@std.stei.itb.ac.id

Abstract—Security is a very big issue in modern era where
everything is transmitted through internet. There are a lot of
possible attack happening on transmission process. Many
methods and means have been used for securing transmission. A
method is by applying cryptography, encryption and decryption,
to the data transmitted.

Keywords—security; transmission; encryption; descryption

I. INTRODUCTION
Everyone has some privacy that must not be known by

others. Generally, every party has some privacy. Privacy is
related to keeping secrets. However, privacy is not only about
secrecy, but also ways of communication of multiple parties.
Many private ways of communication exists, one of which is
cryptography. Ironically, some cryptography algorithm require
public involvement.

Prime numbers are a very important element in
mathematics, especially discrete mathematics. Various
researches and experiments about prime numbers have been
conducted. Some are about identifying prime numbers, some
are about primality testing, some are about the applications of
prime numbers. Identifying prime numbers are done by
primality testing. Primality testing algorithms available are not
able to fully determine whether a number is prime. Because of
that, prime numbers have a very big value. Even if the
algorithm can correctly determine primality, like Sieve of
Erathosthenes, they tend to be slow that they cannot be used to
determine a very big prime number.

Prime number is a very fundamental element in number
theory. More over, prime numbers are also a fundamental
element in cryptography. All cryptographic algorithm needs a
big prime numbers for security. That is why, bigger prime
numbers has a very big value on ‘securitians’, a self-made term
for people working in security. Needless to say, prime numbers
are naturally used in cryptography as if cryptography breathes
prime numbers.

Cryptography is classified into symmetric key cryptography
and asymmetric key cryptography. Symmetric key
cryptography, as its name suggests, is a cryptographic method
that uses the same key for both encryption and decryption.

Assymmetric key cryptography uses different keys for
encryption and decryption. Symmetric key cryptography,
because of its simplicity, is much easier and needs less time to
implement compared to assymmetric key cryptography, with
the drawback being less secure.

Key management has always been the problem for any
cryptographic algorithm, especially symmetric key
cryptography. Key management involves generating and
distributing the key to stakeholders involved. Symmetric key
cryptography uses same keys for both encryption and
decryption, which means that the key must be distributed very
carefully and securely. Key management is not a big problem
in assymmetric cryptography because it uses two kinds of key.

Images are widely used on the internet. The security and
privacy of images transmitted through the internet is a very
important issue. Cryptograpy solves that issue. However, Not
every cryptography is secure enough to secure images
transmitted through the internet.

II. THEORETICAL BASE

A. Symmetric-Key Cryptography
Symmetric-key cryptography is a system of cryptography

where the encryption key is the same as the decryption key.
Symmetric key is very versatile to brute force attack and
cryptanalysis because of its simplicity. Symmetric-key
cryptography itself is very limited as it mostly uses ASCII
characters. One example of symmetric-key cryptography is
Caesar Cipher.

Caesar cipher is an old cryptography algorithm based on
alphabet. Caesar cipher uses substitution technique as its main
principle. Substitution technique, as its name suggests,
substitutes a letter of plain text with a letter of cipher text.
Caesar cipher uses caesar wheel, which contains two layer of
alphabet letters placed circularly in one direction.

B. Public-Key Cryptography
Public-key cryptography, which is also called assymmetric

cryptography, uses different types of keys for encryption and
decryption, unlike symmetric-key cryptography. As its name

Makalah IF4020 Kriptografi, Semester I Tahun 2021/2022

suggests, public-key cryptography involves publicly publishing
the encryption. However, only the accomplice can make use of
the key published and apply cryptography to communicate with
each other. Public-key cryptography is often slower than
symmetric-key cryptography because public-key cryptography
is more complex.

There are many public-key cryptography algorithms
available. Some examples are RSA, Blum-Goldwasser, Pohlig-
Hellman, El-Gamal, and elliptic-curve-based algorithms. El-
Gamal and RSA both uses prime numbers. The security of both
El-Gamal and RSA is fully dependent to the size of the prime
number used. Increasing the size of the prime numbers used
will increase the security of the algorithm. However, it comes
with a drawback of harder computations. Basic El-Gamal
cryptography algorithm is as follows:

1) Generate a very big prime p and a defined number g.
Both p and g are an agreement between accomplices

2) The receiver generates a random integer x as his/her
private key and the corresponding public key (p, g, gx) and
publishes the public key

3) After receiving the public key, the sender splits the
message to some blocks, each block can be interpreted as an
integer m in interval [0, p – 1]

4) The sender generate a random integer k and send the
encrypted message as (gk, mgxk) (mod p) to the receiver. Let it
be at the form of (γ, δ)

5) The receiver uses his/her private key x by calculating
the value of δ / γx.

Bigger p and g decreases the chance of the cipher being
insecure. El-Gamal is inspired from discrete logarithm problem
which is as follows “Given gx (mod p), it is very difficult to
calculate x if g and p” if both g and p are big.

C. RSA
RSA, Rivest-Shamir-Adleman, is found by three

researchers from Massachussets Institute of Technology,
Ronald Rivest, Adi Shamir, Leonard Adleman in 1976. Of all
public-key algorithms proposed on the same era as or before
RSA, RSA is the easiest to understand and implement. RSA
uses the difficulty of factoring large number as its idea. Both
the public key and private key are both functions of two very
large prime numbers. This simple yet secure mechanism has
proven itself by withstanding years of extensive cryptanalysis.
Its key generation mechanism is as follows:

1) All accomplices generate two very big prime numbers p
and q. Then calculate their product, n.

2) Receiver randomly chose the public key e such that e
and (p – 1)(q – 1) are relatively prime

3) Receiver then needs to calculate private key d using
extended Euclidean Algorithm such that

 ed ≡ 1 mod (p – 1)(q – 1) (1)

4) Both p and q can be discarded.

To encrypt message m, the sender must first divide it to
numerical blocks, with each block is smaller than n. The
encrypted message, c, is made up of every encrypted block, ci,
where

 ci = mie mod n. (2)

To decrypt a message, take each encrypted block ci and
calculate

 mi = cid mod n. (3)

 RSA is a slow algorithm as it operates on very big numbers.
RSA encryption can go much faster depending on the value of
e. For the value of e, PEM recommends 3, X.509 recommends
65537, PKCS recommends 3 or 65537.

D. Elliptic Curve
Elliptic curves are curves satisfying

 y2 = x3 + ax + b (4)

where

 0 ≠ 4a3 + 27b2. (5)

Elliptic curve is a cause for elliptic curve discrete logarithm
problem. Calculating Q = kP given k and P is easy, but
calculating k given P and Q is very difficult with both P and Q
is a point on Elliptic curve, especially when k is big. In elliptic
curve, kP is analogous to Pk, which has discrete logarithm
problem.

Fig. 1. y2 = x3 + x + 1 (GeoGebra)

Let p > 3 be a prime number. An elliptic curve y2 = x3 + ax
+ b over Zp is a set E of all (x, y) where y2 ≡ x3 + ax + b (mod
p). A particular point O is then added to E. O is called the point
at infinity. The result r of additions, subtractions, and scalar
multiplication on any element e in E will always be a subset of
E.

Makalah IF4020 Kriptografi, Semester I Tahun 2021/2022

Generally, elliptic curve supports two main operations:

1) Addition
For given P(xp, yp) and Q(xq, yq) where P + Q = R(xr, yr), R
is calculated depending on P and Q. If both of P and Q are
two different points with the same absis, R is point at
infinity. Other cases are calculated by:

 xr = m2 – xp - xq (6)

 yr = m(xp – xr) –yp (7)

 m = (yp – yq)(xp – xq)-1 mod p, P ≠ Q (8)

 m = (3xp2 + a)(2yp)-1 mod p, P = Q (9)

2) Multiplication
Multiplication is repeated addition. Only scalar
multiplication is applicable to elliptic curves.
Multiplication for k = 2 is often called doubles.
Multiplicating point at infinity will result in point at
infinity. Multiplicating a point by zero will result in point
at infinity. Generally, for integer k, scalar multiplication of
P(xp, yp) on elliptic curve E with n points, including point
at infinity, is as follows:

 kP = (k + n)P = P + P + P + ... + P for k times (10)

 –P = (xp , –yp) mod p (11)

E. Elliptic Curve RSA
Elliptic curve RSA is a variation of elliptic curve

cryptography where elliptic curve is combined with RSA. The
schemes are similar to that of RSA, with a few modifications
made by the writer. For elliptic curve that has n points,
including the point at infinity, and a point P, kP is recurring,
which means that

 kP = (k + n)P (12)

If RSA has two numbers e, d so that e and d satisfies (1),
then ECRSA has two numbers e, d so that e and d satisfies

 ed ≡ 1 (mod n). (13)

F. Hash Function
A hash function is a function that takes an input string and

converts it to a fixed-length output string. The output string is
called digest or hash value, while the input is called pre-image.
Hash is a one-way function, which means that the process of
hashing is irreversible. Any input string will result in the same

length of hash value, irrelevant to length of the input. For this
reason, a hash function can be considered as a compression
function.

Because of one-way property that a hash function has, it is
very difficult to generate a pre-image that corresponds to the
given hash value. However, it is very easy to determine the
hash value of a given pre-image. Hash values has some other
properties: This template was designed for two affiliations.

1) Collision resistance
2) Pre-image resistance
3) Second pre-image resistance

Collision resistance means that it is very difficult to find
two different pre-images with the same hash value. Pre-image
resistance means that it is very difficult to find the pre-image
given the hash value. In fact, it is computationally unfeasible to
find the pre-image. Second pre-image resistance means that it
is very difficult to find a different pre-image n such that the
hash value is h, for h is a hash value of given pre-image m.

Several applications of one-way hash functions include
message integrity, message compression, and normalization.
Hash function is a volatile functions, a change in one bit will
cause the hash value very significantly. With this, it means that
when a hash value of a file is different than the official hash
value, it is safe to say that the file is modified. However, it is
very hard to prove that the file is not modified because some
hash functions are not collision resistance. Some widely known
hash functions are MD5, SHA-256, SHA-384, and SHA-512.

G. Digital Signature
One application of public-key cryptography for

authentication service is digital signature. In signing the
message, the sender uses his/her private key to encrypt the
message. The signature is then embedded to the message,
which are both sent to the receiver. In practice, the message is
initially hashed to prevent the similarity of digital signature and
the message. A digital signature is used to verify the sender of
the message. If the sender of the message is not an accomplice,
there are two possibilities: either the message is not signed or
the signature is invalid. This is a property of digital signature
where only an accomplice can correctly verify another
accomplice.

The first method found was analogous to RSA, namely
RSA signature scheme. RSA signature scheme is a recurring
method. Other than RSA signature scheme, there exists other
digital signature methods with the difference being in
implementation and computation time. El-Gamal can also be
used to digitally sign a message. There are also algorithms
specialized in signing a message digitally like DSA and DSS.

According to Schneier, the characteristics of a digital
signature scheme is:

1) Signature is authentic. The signature convinces the
document’s recipient that the signer deliberately signed the
document.

Makalah IF4020 Kriptografi, Semester I Tahun 2021/2022

2) Signature is unforgeable. Signature is a proof that the
signer, and no one else, deliberately signed the document.

3) Signature is not reusable. The signature is part of the
document, and unscrupulous person cannot move the signature
to a different document.

4) Signature cannot be repudiated. The signature and the
document are physical things. The signer cannot later claim
that he/she did not sign it.

5) Signed documents are unmodifiable.

Let m be the message the sender wanted to send, using El-
Gamal with his/her private key x and public key (p, g, y) where

 y = gx. (14)

Sender then digitally signs m with few steps. The sender uses
his/her private key and signs m with (γ, δ), where

 γ ≡ y (15)

and

 δ ≡ myy. (16)

The receiver can verify the signature by calculating δ / γy.

Digitally signing a message m with RSA is almost the same
as encrypting a message, but instead of using public key, it uses
private key to sign a message. Sender encrypts the message
using his/her private key, d, which then the result is embedded
to the message.

Generally, digital signature is used together with hash
functions. General digital signature scheme starts with hashing
the message m into h, then encrypts h by using any encryption
method into c which is then embedded to the message.

H. Undeniable Digital Signature
Undeniable digital signature schemes are a little bit distinct

from usual normal signatures in a sense that undeniable digital
signature schemes requires the cooperation of the signer. A
scheme available is Chaum-van Antwerpen algorithm, which
the key generation scheme is similar to El-Gamal. Key
generation scheme for signer in Chaum-van Antwerpen
algorithm is as follows:

1) Generate a random prime p = 2q + 1 where q is also a
prime

2) Select an integer α for the subgroup of order q in Zp
*

3) Randomly generate private key a from {1, 2, ..., q – 1}
and compute y = α a mod p

4) Publicly publish (p, α, y) as the signer’s public key

The form of public key is similar to that of El-Gamal’s.
For example, if A signed a message m belonging to the
subgroup of order q, B can verify this signature with the
cooperation of A. In the process of signing m, A can sign the

message by calculating the sign s = ma mod p. To verify the
signature, the protocol is:

- B randomly choose two random secret integers γ, δ
from {1, 2, ..., q – 1}

- B computes z = sγyδ mod p and sends z to A
- A computes i ≡ a-1 mod q and computes w = zi and

sends w to B
- B computes w’ = mγα δ mod p

The signature is verified if and only if w = w’. The proof is as
follows:

 w ≡ zi ≡ (sγyδ)i ≡ (mγaαδa)i ≡ mγαδ ≡ w’ (mod p) (17)

III. IMPLEMENTATION

A. Encoding
Every images are handled in four channels, RGBA, which

is handled as three dimensional array of size height x width x 4
using python programming language. Every possible values in
RGBA, namely [0, 255], is encoded to different points in a
certain elliptic curve and every point must be decoded to
different RGBA values. Because of this encoding system, an
elliptic curve with exactly 256 points are needed. However,
point at infinity has to be taken into account in the 256 points
stated previously. The elliptic curve chosen is:

 y2 = x3 + x + 1 (mod 277) (18)

or an elliptic curve with parameters a = 1, b = 1, and p = 277.

The encoding table is saved as a 1-dimensional array that
consists of 256 elements indexed from 0 to 255. The element at
i is the point i is encoded into. Thus, decoding a point to
RGBA value can be done by using the encoding table. If a
point P is at index i in the encoding table, then P is decoded to
i.

B. Encrypting Image
Encrypting an image is a continuation of encrypting a

message. In encrypting a message using elliptic curve
variations, we encodes one or some characters to a point in the
defined elliptic curve, then encrypts the point that results in
another point which is then decoded into characters. Because
image is made of pixels of color compositions, images can be
encrypted by manipulating the color compositions.

If cryptography is implemented on every color
compositions, there will be height x width x 4 operations done
on the image. Because of this behavior, encrypting the image
takes very much computation time and operations. To optimize
the encryption process, grouping pixels to blocks may be
necessary but may cause the encryption to be lossy depending
on the encoding method chosen. Grouping pixels to blocks can
reduce computation time and operations drastically. To encrypt
an image, the sender and receiver must define the elliptic curve
used and their keys.

Makalah IF4020 Kriptografi, Semester I Tahun 2021/2022

procedure encrypt_image(filename, key)

begin

 channel = “RGBA”

 image = read_image(filename, channel)

 width = image.width

 height = image.height

 img = image.asarray()

 for i = 0 to height – 1

 for j = 0 to width – 1

 for k = 0 to channel.length – 1

 img[i,j,k] = encrypt(img[i,j,k], key)

 // produce the resulting cipher image

 output_image = to_image(img)

 output_image.save(‘out/’ + filename)

end

function generate_key(elliptic_curve) returns
(int, int)

begin

 // number of points in an elliptic

 // curve, including point at infinity

 n = elliptic_curve.points.length

 // e is a prime between 0 and n

 e = random_prime(0, n)

 d = mod_inverse(e, n)

 return (e, d)

end

// defined elliptic curve here

function encrypt(value, key) returns int

begin

 // d is unused

 (e, d) = key

 // encode  encodes a value between [0, 255]

 // to a point in elliptic curve,

 // point at infinity included

 ecc_point = encode(value)

 // multiplying by a scalar in elliptic curve

 // is analogous to powering in numbers

 encrypted_point = ecc_point * e

 // decode the resulting point back to RGB

 // values

 return decode(encrypted_point)

end

function generate_signature_key() returns ((int,
int, int), int)

begin

 q = random_prime(64, 128)

 p = 2 * q + 1

 while not isprime(p) begin

 q = random_prime(64, 128)

 p = 2 * q + 1

 end

 alpha = random(2, q – 1)

 a = random(1, q – 1)

 return ((p, alpha, pow(alpha, a)), a)

end

Key generation is done simultaneously for both the
encryption process, signing process, decryption process, and
verifying process. Generating the encryption and decryption
key follows the following pseudocode:

To encrypt an image, a pseudocode is provided below.

The algorithm first reads the image in RGBA. Having JPEG or
JPG extension will not make the algorithm work because JPEG
and JPG compresses the image, which uses lossy compression
that can cause errors and changes in RGBA values. The
algorithm checks for every pixel in the image, where each pixel
contains four values between 0 and 255 inclusively. Each
values are encrypted using the key provided.

The encryption using ECRSA uses only public key e with
defined elliptic curve parameters in (18). The encryption
algorithm for every RGBA value is simple, which is shown in
the following pseudocode.

C. Signing Image
Key generation process for signing and verifying a

signature is as follows:

The key used for digital signature is small, with only one byte
in size, because the powers done by the algorithm will be in
mod p, must be in the range where RGBA values are valid. In
this context, the signature is only embedded at the end of file,
which does not get reflected in the image shown.

Signing process first started by reading every byte in the
file. Every bytes is raised to the power of private signature key
a. The signature is then embedded as
SSSSSIIIIIGGGGGNNNNN***** followed by the signed
bytes content. The SSSSSIIIIIGGGGGNNNNN***** is used
to mark the beginning of a digital signature. Only one
SSSSSIIIIIGGGGGNNNNN***** marked signature can exist

Makalah IF4020 Kriptografi, Semester I Tahun 2021/2022

function sign(filename, public_key, private_key)
returns boolean

begin

 (p, alpha, y) = public_key

 a = private_key

 // check if the file is signed

 // signing a signed file = sign failed

 if is_signed(filename):

 return false

 content = read_file(filename)

 content_length = content.length

 content_bytes = content.to_bytes

 for i = 0 to content_length – 1 begin

 content_bytes[i] = pow(content_bytes[i], a)

 end

 // append signature to file

 write_file(‘signed-‘ + filename, content)

 write_file(‘signed-‘ + filename,
“SSSSSIIIIIGGGGGNNNNN*****”)

 write_file(‘signed- + filename, content_bytes)

 // signature successful

 return true

end

function verify (filename, public_key,
private_key) returns boolean

begin

 (p, alpha, y) = public_key

 // p = 2q + 1

 q = (p – 1) / 2

 a = private_key

 // check if the file is signed

 if not is_signed(filename):

 return false

 content = read_file(filename)

 // parse the signature from whole file content

 content, signature = parse(content)

 // verifier generates 2 secret random numbers

 gamma = random(1, q – 1)

 delta = random(1, q – 1)

 // verifier computes z

 z = pow(signature, gamma) * pow(y, delta)

 // signer computes w

 a_inv = mod_inverse(a, q)

 w = pow(z, a_inv)

 // verifier computes w’ (read: w prime)

 w_prime = pow(content, gamma) * pow(alpha,
delta)

 return w = w_prime

end

in a file. The signing process will cause the file size to be
doubled.

D. Verifying Digital Signature
Signature verification is started by reading every byte in a

file and checks for SSSSSIIIIIGGGGGNNNNN*****
embedded in the file. If it is not found, the verification process
failed because there is no signature to verify. If it is found, it
reads the embedded signature that comes after the mark. On
verifying the signature, interaction between verifier and signer
must be done. Writer implements the interaction as if it is done
without any interaction which is shown in pseudocode below.

Makalah IF4020 Kriptografi, Semester I Tahun 2021/2022

procedure decrypt_image(filename, key)

begin

 channel = “RGBA”

 image = read_image(filename, channel)

 width = image.width

 height = image.height

 img = image.asarray()

 for i = 0 to height – 1

 for j = 0 to width – 1

 for k = 0 to channel.length – 1

 img[i,j,k] = decrypt(img[i,j,k], key)

 // produce the resulting image

 output_image = to_image(img)

 output_image.save(‘out2/’ + filename)

end

// defined elliptic curve here

function decrypt(value, key) returns int

begin

 // e is unused

 (e, d) = key

 ecc_point = encode(value)

 // multiplying by a scalar in elliptic curve

 // is analogous to powering in numbers

 decrypted_point = ecc_point * d

 // decode the resulting point back to RGB

 // values

 return decode(decrypted_point)

end

E. Decrypting Image
To decrypt an image, a pseudocode is provided below.

The algorithm first reads the image in RGBA. Having JPEG or
JPG extension will not make the algorithm work because JPEG
and JPG compresses the image, which uses lossy compression
that can cause errors and changes in RGBA values. The
algorithm checks for every pixel in the image, where each pixel
contains four values between 0 and 255 inclusively. Each
values are decrypted using the key provided.

The decryption using ECRSA uses only private key d with
defined elliptic curve parameters in (18). The decryption
algorithm for every RGBA value is simple, which is shown in
the following pseudocode.

IV. ANALYSIS
The specifications of the computer used in the simulation is

Intel® Core™ i3-2370M CPU @ 2.40GHz, 16GB RAM,
Python 3.8.10 on Windows 7 (64-bit). The elliptic curve used
has exactly 256 points with parameter

a = 1;

b = 2;

p = 277.

The keys used are as follows:

e = 179;

d = 123;

(ps, α, y) = (179, 27, 66);

as = 74.

Where e is RSA encryption key, d is RSA decryption key, ps is
prime number used as a public key in undeniable digital
signature, α is a prime number used as base in undeniable
digital signature, y is a discrete exponential of α to as, the
private key.

 To encrypt or decrypt an AES key with 128 bits in size, key
sizes varies depending on the algorithm used. For RSA, the key
size needed is 3072 bits. For elliptic curve cryptography
variations, only 256-bits keys are needed with a big ratio of 12
to 1. This proves that elliptic curve algorithm variations are
much more secure than RSA with the same key size. One way
to increase the security of RSA is by increasing the size of the
keys. However, as key size increase, the number increases.
Researches to identify big prime numbers are still being
conducted, which means that RSA key size is still very limited.

Fig. 2. NIST guidelines for public key sizes for AES (Rinaldi Munir)

 The algorithm first reads the image in four channels, which
are R, G, B, and A that only exists in a PNG image file. The
algorithm checks for every pixel in the image, where each pixel
contains four values between 0 and 255 inclusively. Each
values are then encrypted or decrypted using the key provided.
The algorithm will check for width * height pixels. Thus, the
algorithm is slow for images with very big size.

Makalah IF4020 Kriptografi, Semester I Tahun 2021/2022

Fig. 3. True image Fig. 4. Encrypted image Fig. 5. Signed image Fig. 6. Decrypted image

 Moreover, as the key size used in encryption, decryption,
signing, and verifying process are relatively small (8 or 9 bits),
the security level is low. On the other hand, the key used will
be relatively static because of the constraints applied, which
makes the algorithm less secure.

For images, visual cryptography is more recommended than
normal cryptographic method because:

1) Visual cryptography uses less computation time and
capacity

2) Decryption in visual cryptography can be done without
any computations, as opposed to normal cryptographic method
where it needs computations on big numbers

3) Visual cryptography does not need any keys for
encryption and decryption, but uses share to denote the
number of divisions done.

V. CONCLUSION
Cryptography has many uses, one of them is to secure

image sent in the internet. There are many cryptographic
algorithms available publicly. Some of them are El-Gamal,
RSA, and elliptic curve algorithms. Elliptic curve algorithms
are proven to be more secure than other cryptographic
algorithms with the same key size. Security can be further
increased by embedding a digital signature on the image. One
kind of digital signature is undeniable digital signature that
needs the involvement of the signer, thus the signer cannot
deny that he/she signed the message.

SOURCE CODE LINK AT GITHUB
https://github.com/hokkyss/image-cryptography

ACKNOWLEDGMENT
The writer is grateful to Mr. Rinaldi Munir, the lecturer of

IF4020 Cryptography who taught the writer on weekly

lectures. The writer is also grateful to friends that listened to
the writer when the writer has some problems regarding this
paper. The writer is grateful to close friends who motivated and
encouraged the writer when writing this paper.

REFERENCES
[1] Menezes, Alfred J and friends. (1996). Handbook of Applied

Cryptography. Massachusetts Institute of Technology.
[2] Scheneier, Bruce. (2015). Applied Cryptography: Protocols, Algorithms,

and Source Code in C. Indianapolis: John Wiley & Sons.
[3] Jajodia, Sushil. (2011). Encyclopedia of Cryptography and Security.

Springer Science+Business Media.
[4] Stallings, William. (2017). Cryptography and Network Security.

Principles and Practice. Seventh Edition Global Edition. England:
Pearson.

[5] Sumarkidjo, dkk. (2007). Jelajah Kriptologi. Jakarta: Lembaga Sandi
Negara.

[6] Munir, Rinaldi. (2021). Bahan Kuliah IF4020 Kriptografi. Program
Studi Informatika STEI-ITB.

PERNYATAAN
Dengan ini saya menyatakan bahwa makalah yang saya tulis
ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan
dari makalah orang lain, dan bukan plagiasi.

Pekanbaru, 20 Desember 2021

Hokki Suwanda
13519143

https://github.com/hokkyss/image-cryptography

	I. Introduction
	II. Theoretical base
	A. Symmetric-Key Cryptography
	B. Public-Key Cryptography
	1) Generate a very big prime p and a defined number g. Both p and g are an agreement between accomplices
	2) The receiver generates a random integer x as his/her private key and the corresponding public key (p, g, gx) and publishes the public key
	3) After receiving the public key, the sender splits the message to some blocks, each block can be interpreted as an integer m in interval [0, p – 1]
	4) The sender generate a random integer k and send the encrypted message as (gk, mgxk) (mod p) to the receiver. Let it be at the form of (γ, δ)
	5) The receiver uses his/her private key x by calculating the value of δ / γx.

	C. RSA
	1) All accomplices generate two very big prime numbers p and q. Then calculate their product, n.
	2) Receiver randomly chose the public key e such that e and (p – 1)(q – 1) are relatively prime
	3) Receiver then needs to calculate private key d using extended Euclidean Algorithm such that
	4) Both p and q can be discarded.

	D. Elliptic Curve
	1) Addition
	For given P(xp, yp) and Q(xq, yq) where P + Q = R(xr, yr), R is calculated depending on P and Q. If both of P and Q are two different points with the same absis, R is point at infinity. Other cases are calculated by:
	2) Multiplication
	Multiplication is repeated addition. Only scalar multiplication is applicable to elliptic curves. Multiplication for k = 2 is often called doubles. Multiplicating point at infinity will result in point at infinity. Multiplicating a point by zero will ...

	E. Elliptic Curve RSA
	F. Hash Function
	1) Collision resistance
	2) Pre-image resistance
	3) Second pre-image resistance

	G. Digital Signature
	1) Signature is authentic. The signature convinces the document’s recipient that the signer deliberately signed the document.
	2) Signature is unforgeable. Signature is a proof that the signer, and no one else, deliberately signed the document.
	3) Signature is not reusable. The signature is part of the document, and unscrupulous person cannot move the signature to a different document.
	4) Signature cannot be repudiated. The signature and the document are physical things. The signer cannot later claim that he/she did not sign it.
	5) Signed documents are unmodifiable.

	H. Undeniable Digital Signature
	1) Generate a random prime p = 2q + 1 where q is also a prime
	2) Select an integer  for the subgroup of order q in Zp*
	3) Randomly generate private key a from {1, 2, ..., q – 1} and compute y =  a mod p
	4) Publicly publish (p, , y) as the signer’s public key

	III. Implementation
	A. Encoding
	B. Encrypting Image
	C. Signing Image
	D. Verifying Digital Signature
	E. Decrypting Image

	IV. Analysis
	1) Visual cryptography uses less computation time and capacity
	2) Decryption in visual cryptography can be done without any computations, as opposed to normal cryptographic method where it needs computations on big numbers
	3) Visual cryptography does not need any keys for encryption and decryption, but uses share to denote the number of divisions done.

	V. Conclusion
	Source code Link at Github
	Acknowledgment
	References

